This post was originally published on ZPE Systems
Artificial intelligence is transforming business operations across nearly every industry, with the recent McKinsey global survey finding that 72% of organizations had adopted AI, and 65% regularly use generative AI (GenAI) tools specifically. GenAI and other artificial intelligence technologies are extremely resource-intensive, requiring more computational power, data storage, and energy than traditional workloads. AI data center infrastructure also requires high-speed, low-latency networking connections and unified, scalable management hardware to ensure maximum performance and availability. This post describes the key components of AI data center infrastructure before providing advice for overcoming common pitfalls to improve the efficiency of AI deployments. AI data center infrastructure components
Computing
Generative AI and other artificial intelligence technologies require significant processing power. AI workloads typically run on graphics processing units (GPUs), which are made up of many smaller cores that perform simple, repetitive computing tasks in parallel. GPUs can be clustered together to process data for AI much faster than CPUs.
Storage
AI requires vast amounts of data for training and inference. On-premises AI data centers typically use object storage systems with solid-state disks (SSDs) composed of multiple sections of flash memory (a.k.a., flash storage). Storage solutions for
— Read the rest of this post, which was originally published on ZPE Systems.